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Summary

The transmission/disequilibrium (TD) test (TDT), pro-
posed, by Spielman et al., for binary traits is a powerful
method for detection of linkage between a marker locus
and a disease locus, in the presence of allelic association.
As a test for linkage disequilibrium, the TDT makes the
assumption that any allelic association present is due to
linkage. Allison proposed a series of TD-type tests for
quantitative traits and calculated their power, assuming
that the marker locus is the disease locus. All these tests
assume that the observations are independent, and there-
fore they are applicable, as a test for linkage, only for
nuclear-family data. In this report, we propose a re-
gression-based TD-type test for linkage between a
marker locus and a quantitative trait locus, using infor-
mation on the parent-to-offspring transmission status of
the associated allele at the marker locus. This method
does not require independence of observations, thus al-
lowing for analysis of pedigree data as well, and allows
adjustment for covariates. We investigate the statistical
power and validity of the test by simulating markers at
various recombination fractions from the disease locus.

Introduction

The transmission/disequilibrium (TD) test (TDT) of
Spielman et al. (1993) is a viable alternative to other
existing sampling designs for testing for linkage between
marker loci and associated dichotomous disease traits
when marker genotypes are known for both the parents
and affected offspring from independent nuclear fami-
lies. As a test for linkage, transmissions from hetero-
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zygous parents to their affected children are used in the
analysis. The test compares the frequency of marker al-
leles transmitted to affected children versus the fre-
quency of marker alleles not transmitted, using a x2 sta-
tistic. Thus, for the purpose of testing for linkage, the
TDT has the advantage of not requiring data on either
multiple affected family members or unaffected sibs (al-
though transmission to unaffected sibs should also stud-
ied if there is any doubt about segregation distortion,
or meiotic drive, at the marker locus). The TDT can also
be used directly as a test for association in the presence
of linkage if the sample consists of nuclear families with
a single affected offspring, as has been suggested by
Spielman and Ewens (1996). However, if families in the
sample have several affected sibs, then it is not a valid
test of association, because of the sibs’ lack of inde-
pendence. Martin et al. (1997) have proposed a method
for testing the null hypothesis of no association and no
linkage against the alternative hypothesis of association
in the presence of linkage, using all affected siblings from
independent nuclear families. They considered the set of
transmissions to affected sibs in the whole family, rather
than the transmissions to each child separately, thus re-
taining the necessary independence property. This
method is more powerful than the TDT applied to a
single affected child in each nuclear family. Cleves et al.
(1997) have proposed the use of an exact TDT for mul-
tiallelic markers, using both an exact algorithm and
Markov-chain Monte Carlo simulation. Their simula-
tion studies showed not only that exact tests improve
the validity and power of the TDT but also that the
power further increases if the nuclear families each con-
sist of two affected sibs and if only those parents who
transmit the same allele to both sibs are included in the
sample for analysis.

Allison (1997) has proposed various TD-type tests for
use with quantitative traits measured in members of in-
dependent nuclear families. These tests accommodate ei-
ther selected sampling or sampling based on selection of
extreme phenotypes among the offspring. All these tests
assume that the observations are independent (for the
purpose of testing for linkage). Allison has shown that,
when a candidate gene in disequilibrium with the marker
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Figure 1 Offspring who are informative for linkage, from relevant parental matings. “A” is the associated allele of interest, “X51”
corresponds to A transmitted from a heterozygous parent, and “X50” corresponds to A not transmitted from a heterozygous parent.

is available, these tests are more powerful than two com-
mon sib-pair linkage tests proposed by Haseman and
Elston (1972) and Risch and Zhang (1996). He further
has noted that, in the presence of disequilibrium, the
sample size needed to map a gene when these tests are
used could be orders of magnitude smaller than the sam-
ple size needed when the sib-pair methods that assume
equilibrium are used.

A disadvantage of all TDT methods is that they can
detect linkage between the marker locus and the disease
trait only if there is association between the disease locus
and alleles at the linked locus. As has been pointed out
by Allison (1997), these methods typically require that
one has a marker that is extremely close to the trait locus,
in order to have adequate power. As a test for linkage
disequilibrium, the TDT makes the assumption that any
allelic association present is due to linkage disequilib-
rium. The tests cannot distinguish between linkage dis-
equilibrium and, in the presence of linkage, allelic as-
sociation due to other causes (such as population
admixture or selection). Thus, the interpretation of these
tests, other than as a test for linkage in the presence of
allelic association, is questionable.

In this paper we propose a TDT for assessment of the
linkage between a marker locus and a quantitative trait,
by regressing the trait on the parental transmission of
an allele of interest, assuming that the alleles at the
marker locus are associated with those at the disease
locus. As in the original TDT, it is not necessary to as-
sume that this association is due to linkage disequilib-
rium; the allelic association could be due to other factors,
such as selection, population admixture, or stratifica-
tion. The model is a simple linear-regression model that
can simultaneously assess the effects that other relevant
covariates have on the trait. Linkage is assessed by eval-
uation of the effect of the transmission or nontransmis-
sion of the associated allele from at least one of the
parents. An advantage of this method is that there is no
restriction on either the family structure sampled (except
for the limitation of the method that is used to compute
the likelihood functions for the analysis) or the affection

status of individuals in the pedigree. We use simulation
to investigate the power of the proposed method for
markers at various distances from the trait locus.

Methods

The method that we propose here is a linear-regression
approach with the disease trait, which is assumed to be
continuous, as the dependent variable (Y). The primary
independent variable in the model is, for each individual,
the transmission status (X) of the associated allele at a
given locus. As in other TD-based tests, only offspring
who are informative for linkage will be used in the anal-
ysis. This includes all offspring of a homozygous # het-
erozygous mating and all homozygous offspring of a
heterozygous # heterozygous mating. The heterozygous
offspring of a heterozygous # heterozygous mating have
each allele transmitted from one parent but not trans-
mitted from the other parent and, therefore, are consid-
ered to be noninformative. If we let A be the associated
allele and assume that the marker locus is diallelic (if
there are more than two alleles at the locus, they can be
treated as A and not-A), the transmission-status variable
X takes on a value of 1 if the offspring possesses allele
A transmitted from a heterozygous parent and takes on
a value of 0 otherwise. Informative offspring are shown
in figure 1, where not-A is denoted as “a.”

If we let p denote the population frequency of the
associated marker allele, under the assumption of ran-
dom mating of the parents, then the probability that an
offspring is informative for linkage is given by

3 3 2 24p (1 2 p) 1 4p(1 2 p) 1 2p (1 2 p)
25 2p(1 2 p)(2 2 3p 1 3p ) . (1)

In addition to X, we can incorporate the additional
covariates C1, ), Ck into the model. The coefficient of
X measures linkage by assessing the association between
the transmission status of allele A from heterozygous



Table 1

Empirical Power and Type I Error of Proposed Method, Based on Simulation of
2,000 Replicates

NO. OF

FAMILIES

NO. OF

OFFSPRING D v

5%
Significance

1%
Significance

0.5%
Significance

200 4 .10
EMPIRICAL POWER

.00 89.7 73.1 65.9

.01 88.4 72.2 64.1

.05 82.7 63.3 54.7

TYPE I ERROR

(%)

.50 6.4 1.2 .7
200 4 .01

v EMPIRICAL POWER

.00 7.6 2.1 1.2

.01 7.9 1.6 .9

.05 8.0 2.5 1.5

TYPE I ERROR

(%)

.50 5.2 .7 .4
200 2 .10

v EMPIRICAL POWER

.00 52.3 29.5 21.9

.01 50.9 27.8 20.3

.05 46.1 22.8 17.4

TYPE I ERROR

(%)

.50 5.8 1.6 .9
200 2 .01

v EMPIRICAL POWER

.00 6.2 1.6 1.0

.01 5.8 1.0 .6

.05 6.5 1.3 .8

TYPE I ERROR

(%)

.50 6.3 1.3 .6
100 4 .10

v EMPIRICAL POWER

.00 64.3 41.4 32.5

.01 62.2 40.1 31.9

.05 55.7 33.2 26.1

TYPE I ERROR

(%)

.50 5.1 1.3 .7
100 4 .01

v EMPIRICAL POWER

.00 7.5 1.5 1.0

.01 7.4 1.8 1.2

.05 6.8 1.5 .8

(continued)
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Table 1 (continued)

NO. OF

FAMILIES

NO. OF

OFFSPRING D v

5%
Significance

1%
Significance

0.5%
Significance

100 4 .01
TYPE I ERROR

(%)

.50 5.8 1.2 .6
100 2 .10

v EMPIRICAL POWER

.00 30.3 14.2 10.3

.01 29.6 11.3 7.6

.05 24.3 10.3 7.2

TYPE I ERROR

(%)

.50 6.2 1.1 .6
100 2 .01

v EMPIRICAL POWER

.00 6.4 1.5 .9

.01 5.6 1.4 .6

.05 5.8 1.5 .8

TYPE I ERROR

(%)

.50 5.1 1.4 .7

parents and the disease trait, after adjusting for the cov-
ariates. Thus, the model for analysis is, for the ith mem-
ber in a pedigree of n individuals,

Y 5 a 1 b C 1 ) 1 b C 1 gX 1 E , (2)i 1 1i k ki i i

where (El,),En)
T is distributed as a multivariate normal

with mean vector 0. The familial correlations among
pedigree members are incorporated by means of the as-
sociation model proposed by George and Elston (1987),
which assumes that the residual Ei is composed of two
additive and uncorrelated random components: a fa-
milial effect, Gi, and an individual-specific residual ef-
fect, Ri. These effects are assumed to be normally dis-
tributed (after transformation, if necessary), with means
0 and variances j2

g and , respectively. As a first ap-2jr

proximation, the familial effect Gi is assumed to lead to
a correlation structure such as would be expected, under
random mating, from polygenic inheritance. Thus the
residual correlation between a pair of jth-degree relatives
is taken to be of the form f2/2j, where

2 2 2 2f 5 j /(j 1 j ) . (3)g g r

For a pedigree of n individuals, the joint likelihood
function is given by

L 5 ) P f (G )f (Y d G )dG ) dGE E g i y i i 1 n
i

25 ) P f (G )J(y 2 G 2 m ,j )dG ) dG ,E E g i i i y r 1 n
i

where , and J(z,j2) ism 5 a 1 b C 1 ) 1 b C 1 gXy 1 1i k ki i

the density, at z, of a normal distribution with mean 0
and variance j2. All integrations are from 2` to `, and
the product is over all n individuals in the pedigree. The
function fg(Gi) takes on one of two forms, depending on
whether the person has no parents in the pedigree or
both parents in the pedigree. In the former case, it is the
population distribution of Gi, which is J(Gi,j

2
g); in the

second case, it is the distribution of the person’s poly-
genic effect, conditional on those of his or her parents
(Gf and Gm), and is given by .2J[G 2 (G 1 G )/2,j /2]i f m g

The joint likelihood of the sample of independent ped-
igrees will be the product of the likelihoods of the in-
dividual pedigrees.

The Elston-Stewart algorithm (Elston and Stewart
1971) can be used to compute the likelihood presented
above. The maximum-likelihood estimates of the pa-
rameters, as well as the standard errors (SEs) of the es-
timates, are computed by numerical methods. These pro-
cedures are implemented in the program ASSOC of the
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Table 2

Parental Two-Locus Mating–Type Probabilities and Joint Probabilities of Offspring’s Trait and Marker Genotypes, Conditional on
Parental Two-Locus Mating Type, When Marker Mating Type Is AA 3 Aa

PARENTAL TWO-
LOCUS MATING TYPE

PROBABILITY OF

MATING TYPE

JOINT PROBABILITY OF OFFSPRING’S TRAIT AND MARKER GENOTYPES

DD Dd dd

AA Aa Aa AA Aa aa AA Aa aa

AD/AD # AD/aD 4 h3
3h1 1/2 1/2 0 0 0 0 0 0 0

AD/Ad # AD/aD 8 h2 h3
2h1 1/4 1/4 0 1/4 1/4 0 0 0 0

AD/AD # AD/ad 4 h4
3h1 (1 2 v)/2 v/2 0 v/2 (1 2 v)/2 0 0 0 0

AD/Ad # Ad/aD 4 h2 h3
2h1 v/2 (1 2 v)/2 0 (1 2 v)/2 v/2 0 0 0 0

Ad/Ad # AD/aD 4 h1 h3
2h2 0 0 0 1/2 1/2 0 0 0 0

AD/Ad # Ad/ad 4 h2 h4
2h1 0 0 0 1/2 1/2 0 0 0 0

AD/Ad # AD/ad 8 h2 h4
2h1 (1 2 v)/4 v/4 0 1/4 1/4 0 v/4 (1 2 v)/4 0

AD/Ad # Ad/aD 8 h1 h3
2h2 v/4 (1 2 v)/4 0 1/4 1/4 0 (1 2 v)/4 v/4 0

Ad/Ad # AD/ad 4 h1 h4
2h2 0 0 0 (1 2 v)/2 v/2 0 v/2 (1 2 v)/2 0

Ad/Ad # Ad/aD 4 h3
3h2 0 0 0 v/2 (1 2 v)/2 0 (1 2 v)/2 v/2 0

AD/Ad # Ad/ad 8 h1 h4
2h2 0 0 0 l/4 1/4 0 1/4 1/4 0

Ad/Ad # Ad/ad 4 h4
3h2 0 0 0 0 0 0 1/2 1/2 0

SAGE (1998) software package. The correlation struc-
ture given by equation (3) can easily be extended to
allow for more-complex models incorporating various
types of common environmental effects (Elston et al.
1992). If one wishes to use only nuclear families instead
of extended pedigrees, then SUDAAN (Shah et al. 1997)
or the Mixed Model procedure in SAS (Littell et al.
1996) can be used to perform the analysis, if it is as-
sumed that there is some form of reasonable correlation
structure within families.

The regression coefficient g in equation (2) can be
expressed as a function of the recombination fraction
(v) and the disequilibrium parameter (D). Let A and a
be the alleles at the marker locus, with , andP(A) 5 p
let D and d be the alleles at the trait locus, with

. Let the trait genotypic means be m, n, and 2m,P(D) 5 q
corresponding to genotypes DD, Dd, and dd, respec-
tively. Then it can be shown (for derivation, see the Ap-
pendix) that

2g 5 2(1 2 2v)D{(1 2 p 1 p )[m 1 (1 2 2q)n]
2 211(1 2 2p)Dn}[p(1 2 p)(2 2 3p 1 3p )] . (4)

Thus, under the assumption of population association
(i.e., ), testing the null hypothesis that isD ( 0 g 5 0
equivalent to the test for no linkage (i.e., ).v 5 .5

Denote the maximum-likelihood estimate of g as ,ĝ

and denote its SE as SE( ). The maximum-likelihoodĝ

estimates have an asymptotic normal distribution, pro-
vided that the log-likelihood function is not appreciably
far from being quadratic (Lindsey 1996). Therefore, it
is reasonable to conclude that is asymptotically nor-ĝ

mal, with mean g. Thus, the test statistic for testing for

linkage is , where T is asymptotically dis-ˆ ˆT 5 g/SE(g)
tributed as standard normal.

We can also perform a likelihood-ratio test for linkage,
by comparing the maximized likelihood functions under
the null and alternative hypotheses. Denote the log like-
lihoods under the null hypothesis of no linkage and un-
der the alternate hypothesis of linkage as l0 and l1, re-
spectively. Under the null hypothesis of no linkage, the
likelihood-ratio statistic is asymptotically dis-2(l 2 l )1 0

tributed as x2 with 1 df (Lindsey 1996).

Simulation Study of Power and Validity

To evaluate the power of the proposed method, we
simulated sets of 2,000 replicate samples, each sample
consisting of either 100 or 200 nuclear families, each of
contained two parents and either two or four offspring,
under the assumption of random mating of the parents.
A quantitative trait was simulated with a polygenic ef-
fect, a random environmental effect, and a major-gene
(the trait locus) effect for each individual. We assumed
that these three effects are independent of each other.
The parents’ polygenic component was randomly as-
signed on the basis of a normal distribution with mean
0 and variance .25. The offspring’s polygenic compo-
nents were derived by adding to the average of the par-
ents’ polygenic effects a random deviation with mean 0
and variance .125. The random environmental effect
was simulated on the basis of a normal distribution with
mean 0 and variance .5. The major-gene effect at the
trait locus (D) was additive, with and ,m 5 .7071 n 5 0
with allele frequencies , resulting in aP(D) 5 P(d) 5 .5
major-locus variance of .25. Thus the polygenic effect
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Table 3

Parental Two-Locus Mating–Type Probabilities and Joint Probabilities of Offspring’s Trait and Marker Genotypes, Conditional on
Parental Two-Locus Mating Type, When Marker Mating Type Is AA 3 aa

PARENTAL TWO-
LOCUS MATING TYPE

PROBABILITY OF

MATING TYPE

JOINT PROBABILITY OF OFFSPRING’S TRAIT AND MARKER GENOTYPES

DD Dd dd

AA Aa aa AA Aa aa AA Aa aa

AD/aD # aD/aD 4 h1
3h3 0 1/2 1/2 0 0 0 0 0 0

AD/aD # aD/aD 8 h1 h4
2h3 0 1/4 1/4 0 1/4 1/4 0 0 0

AD/ad # aD/aD 4 h1 h2
3 h4 0 (1 2 v)/2 v/2 0 v/2 (1 2 v)/2 0 0 0

Ad/aD # aD/aD 4 h2
3h3 0 v/2 (1 2 v)/2 0 (1 2 v)/2 v/2 0 0 0

AD/aD # ad/ad 4 h1 h3
2h4 0 0 0 0 1/2 1/2 0 0 0

Ad/ad # aD/aD 4 h2 h4
2h3 0 0 0 0 1/2 1/2 0 0 0

AD/ad # aD/ad 8 h1 h3
2h4 0 (1 2 v)/4 v/4 0 1/4 1/4 0 v/4 (1 2 v)/4

Ad/aD # aD/ad 8 h2 h4
2h3 0 v/4 (1 2 v)/4 0 1/4 1/4 0 (1 2 v)/4 v/4

AD/ad # ad/ad 4 h1
3h4 0 0 0 0 (1 2 v)/2 v/2 0 0v/2 (1 2 v)/2

Ad/aD # ad/ad 4 h2 h3
2h4 0 0 0 0 v/2 (1 2 v)/2 0 (1 2 v)/2 v/2

Ad/ad # aD/ad 8 h2 h3
2h4 0 0 0 0 1/4 1/4 0 1/4 1/4

Ad/ad # ad/ad 4 h2
3h4 0 0 0 0 0 0 0 1/2 1/2

and the major gene each accounted for 25% of the total
phenotypic variance, whereas the random environmen-
tal effect accounted for 50%. The marker allele A was
simulated with and . Linkage-dise-P(A) 5 .4 P(a) 5 .6
quilibrium coefficients, D’s, of .1 and .01 were achieved
by use of and .21, respectively;P(Ad) 5 .3 P(ad) 5 .2
and .29, respectively; and .19, respectively;P(AD) 5 .1
and and .31, respectively. The simulation ofP(aD) 5 .4
the genotypes of the trait loci and the marker loci was
repeated with , .01, .05, and .5, under the as-v 5 .0
sumption that there was no crossover interference. No
covariates were included in the simulation. We used the
program ASSOC in SAGE (1998) to perform the anal-
yses. Empirical power for linkage testing by test statistic
T was computed at significance levels .005, .01, and .05.
The results of the simulation are given intable 1. Under
moderate disequilibrium (i.e., ), the power is veryD 5 .1
high when v is close to 0, and it decreases as v approaches
.5. When the marker and the trait locus are weakly as-
sociated ( ), the power is, as expected, extremelyD 5 .01
low (very close to the nominal significance level), re-
gardless of the value of v. It should be pointed out that
the power depends on both the family structure and the
number of informative offspring in the sample size. Be-
cause the families were generated under the assumption
of random mating, the number of informative offspring
varied among replicates in the simulation. In our sim-
ulation, the frequency of the associated marker allele, p,
was taken to be .4 and, hence, by equation (1), the prob-
ability of an offspring being informative was 61%. For
a fixed total number of offspring, families with larger
sibship size should increase this probability, because of
familial correlation and linkage disequilibrium. Our sim-
ulation study confirms these facts; the power corre-

sponding to 100 families each containing four offspring
is higher than that of 200 families each containing two
offspring. Therefore, because the cost of genotyping is
cheaper, per offspring, in larger families (there being, on
average, fewer parents to type), it is cost-effective to take
larger families into the study.

corresponds to the null hypothesis of no link-v 5 .5
age, and the corresponding power is the empirical type
I error. The empirical type I errors for various signifi-
cance levels are also given in table 1. These values are
close to the specified levels, regardless of the value of D,
thus supporting the validity of the method. Asymptot-
ically, the T statistic and the likelihood ratio–test statistic
are normally distributed, but one may question the prop-
erties that these tests have for finite samples. The sim-
ulation results show that our proposed method is valid
and quite powerful when the sample size is reasonably
large.

Discussion

The method that we propose here is more general than
those that have been described by Allison (1997). Our
method allows for arbitrary pedigree structure and non-
independence of observations. Even though the trans-
missions of marker alleles from parents to offspring are
independent, the disease trait may still be dependent
among family members, because of polygenic and com-
mon environmental effects. Therefore it is necessary to
account for some reasonable form of correlation struc-
ture in the analysis. We assumed that the correlation
structure among the pedigree members was as would be
expected, under random mating, from polygenic inher-
itance and random residual error, but this is not a nec-



Table 4

Parental Two-Locus Mating–Type Probabilities and Joint Probabilities of Offspring’s Trait and Marker Genotypes, Conditional on Parental Two-Locus Mating Type, When Marker Mating
Type Is Aa 3 Aa

PARENTAL TWO-
LOCUS MATING TYPE

PROBABILITY OF

MATING TYPE

JOINT PROBABILITY OF OFFSPRING’S TRAIT AND MARKER GENOTYPES

DD Dd dd

AA Aa aa AA Aa aa AA Aa aa

AD/aD # AD/aD 4 2 2h h1 3 1/4 1/2 1/4 0 0 0 0 0 0
AD/aD # AD/ad 8 h3 h4

2h1 (1 2 v)/4 1/4 v/4 v/4 1/4 (1 2 v)/4 0 0 0
AD/aD # Ad/aD 8 h1 h2

2h3 v/4 1/4 (1 2 v)/4 (1 2 v)/4 1/4 v/4 0 0 0
AD/aD # Ad/ad 8 h1 h2 h3 h4 0 0 0 1/4 1/2 1/4 0 0 0
AD/ad # AD/ad 4 2 2h h1 4

2(1 2 v) /4 [v(1 2 v)]/2 v2/4 [v(1 2 v)]/2 2 2[v 1 (1 2 v) ]/2 [v(1 2 v)]/2 v2/4 [v(1 2 v)]/2 2(1 2 v) /4
Ad/aD # AD/ad 8 h1 h2 h3 h4 [v(1 2 v)]/4 2 2[v 1 (1 2 v) ]/4 [v(1 2 v)]/4 2 2[v 1 (1 2 v) ]/4 v(1 2 v) 2 2[v 1 (1 2 v) ]4 [v(1 2 v)]/4 2 2[v 1 (1 2 v) ]/4 [v(1 2 v)]/4
Ad/aD # Ad/aD 4 2 2h h2 3 v2/4 [v(1 2 v)]/2 2(1 2 v) /4 [v(1 2 v)]/2 2 2[v 1 (1 2 v) ]/2 [v(1 2 v)]/2 2(1 2 v) /4 [v(1 2 v)]/2 v2/4
Ad/ad # AD/ad 8 h1 h2

2h4 0 0 0 (1 2 v)/4 1/4 v/4 v/4 1/4 (1 2 v)/4
Ad/ad # Ad/aD 8 h3 h4

2h2 0 0 0 v/4 1/4 (1 2 v)/4 (1 2 v)/4 1/4 v/4
Ad/ad # Ad/ad 4 2 2h h2 4 0 0 0 0 0 0 1/4 1/2 1/4
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essary assumption (Elston et al. 1992). If the sample
consists of only nuclear families, the correlation struc-
ture can be modeled by the mixed-model approach in
software packages such as SAS or SUDAAN. For the
purpose of power calculations, Allison (1997) assumed
that the marker locus is the disease locus itself. When
we ran the simulation under that assumption, using our
method, the power was extremely high (199%) for all
combinations of family and offspring sizes. Another ad-
vantage of our method is that it allows us to estimate
the effects of other relevant covariates simultaneously
with the detection of linkage.

As with other TD-type tests, this new test can be very
powerful when markers are extremely close to the dis-
ease locus, so that they are in disequilibrium with it. In
principle, this test should be more powerful than the
conventional TDT using McNemar’s test after dichot-
omizing the disease trait. We can include relevant cov-
ariates, their interactions, and interactions with the
marker allele in the model and then test their signifi-
cance. Furthermore, a regression model such as this will
enable us to use regression diagnostics to check the
model’s validity with respect to the various distribu-
tional assumptions. Our simulation study substantiates
the fact that the proposed test is valid and very powerful,
especially when the marker locus is close to the disease
locus.

The method proposed here assumes that the trait val-
ues—or, more correctly, the residuals—are normally dis-
tributed. If there is significant departure from normality,
then the Box-Cox power transformation or the general
class of power transformations proposed by George and
Elston (1988) can be incorporated to induce approxi-
mate normality. This is an option available in the ASSOC
program.

All TDT methods test for linkage in the presence of
population association. As is evident from the expression
for g, in equation (4), the test can have power only if

. Therefore, in the absence of the knowledge ofD ( 0
the presence of any population association, no TDT
method can detect linkage. It is, however, possible to
perform a two-stage procedure in which, at the first
stage, a test of association is performed, and in which,
if significant association is found, we can proceed with
the second stage, of testing for linkage. The procedure
is outlined as follows:

1. Regress the disease trait Yi on the covariates and
the association variable Zi, using the model

Y 5 a 1 b C 1 ) 1 b C 1 dZ 1 E , (5)i 1 li k ki i i

where Zi is defined as 1 if the associated allele A is
present in the ith individual and is defined as 0 otherwise.

Perform the likelihood-ratio test or the t-test to assess
the significance of association.

2. If significant association is found in stage 1, then
regress Yi on the covariates and Xli, using the model
given in equation (2), and perform the test for linkage,
as indicated above.

An advantage of using this two-stage procedure is that
we need perform the second-stage analysis only if sig-
nificant allelic association is found in the first stage. We
can include in the sample the parents and offspring who
are noninformative for linkage, when performing the test
for association in the first stage.

The method proposed here can easily be extended for
analysis of linkage between marker loci and binary traits,
by modeling the trait by means of a logistic-regression
approach. We replace Yi in either equation (2) or equa-
tion (5) by the logit-function loge, , where p isp/(1 2 p)
the probability of the disease, under the model assump-
tion that the effect of linkage is additive with respect to
the logit function. Again, for nuclear families, we can
use the SAS or SUDAAN software packages to perform
the analysis, using some form of correlation structure
among family members. However, incorporating the cor-
relation structure and computing the likelihood for ex-
tended pedigrees may be more difficult to implement.
Finally, it should be pointed out that, when a genome
scan is performed with tests on a large number of mark-
ers within a region of interest, appropriate adjustments
of the significance level must be made, to account for
multiple testing and to control the genomewide signifi-
cance level.
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Appendix

Let A and a, the alleles at the marker locus, have
probabilities p and , respectively, and let D and d,1 2 p
the alleles at the trait locus, have probabilities q and

, respectively. D is defined as . The1 2 q D 5 P(AD) 2 pq
haplotype frequencies with respect to the two loci, in
terms of the allelic frequencies and D, are given by
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h 5 P(AD) 5 pq 1 D ,1

h 5 P(Ad) 5 p(1 2 q) 2 D ,2

h 5 P(aD) 5 (1 2 p)q 2 D ,3

h 5 P(ad) 5 (1 2 p)(1 2 q) 1 D .4

Thus, . Let the trait genotypic meansD 5 h h 2 h h1 4 2 3

m, n, and 2m correspond to genotypes DD, Dd, and dd,
respectively. Without loss of generality, we can assume
that the model given by equation (2) contains no cov-
ariates and that Xi and Ei in equation (2) are indepen-
dent. Then parameter g in equation (4) can be deter-
mined as follows:

g 5 E(YFX 5 1) 2 E(YFX 5 0)i i i i

5 mP(DDFX 5 1) 1 nP(DdFX 5 1)i i

2mP(ddFX 5 1) 2 mP(DDFX 5 0)i i

2nP(DdFX 5 0) 1 mP(ddFX 5 0)i i

P(DD,X 5 1) P(dd,X 5 1)i i5 m 2[ P(X 5 1) P(X 5 1)i i

P(DD,X 5 0) P(dd,X 5 0)i i2 1 ]P(X 5 0) P(X 5 0)i i

P(Dd,X 5 1) P(Dd,X 5 0)i i1n 2 .[ ]P(X 5 1) P(X 5 0)i i

Because P(X 5 1) 5 P(X 5 0) 5 p(1 2 p)(2 2 3p 1i i

for the informative matings given in figure 1, we23p )
have

g 5 [1/P(X 5 1)]{m[P(DD,X 5 1) 2 P(dd,X 5 1)i i i

2P(DD,X 5 0) 1 P(dd,X 5 0)]i i

1n[P(Dd,X 5 1) 2 P(Dd,X 5 0)]} .i i

(A1)

Let the offspring genotype at the trait locus be denoted
by Gt, the offspring genotype at the marker locus be Gm,
the parental mating type for the marker locus be Mm,
and the parental two-locus mating type be Mmt. Then

P(G ,X 5 1) 5 P(G ,AA,AA # Aa)t i t

1P(G ,Aa,Aa # aa)t

1P(G ,AA,Aa # Aa) ,t

P(G ,X 5 0) 5 P(G ,Aa,AA # Aa)t i t

1P(G ,aa,Aa # aa)t

1P(G ,aa,Aa # Aa) , (A2)t

where P(Gt,Gm,Mm) is the joint probability of offspring
trait and marker genotypes and of the parental mating
type at the marker locus. Now, P(Gt,Gm,Mm) can be cal-
culated by noting that

P(G ,G ,M ) 5 P(M )P(G ,G FM ) , (A3)Ot m m mt t m mt

where the summation is over all values from the set of
two-locus parental mating types that are consistent with
both the mating type Mm and the genotypes of the off-
spring that correspond to the trait and marker loci. The
probabilities P(Mmt) and P(Gt,GmFMmt) are given in ta-
bles 2, 3, and 4, for the informative matings ,AA # Aa

, and , respectively, which are adaptedAa # aa Aa # Aa
from the work of Zhu (1999). When equations (A2) and
(A3) and the probabilities given in the tables 2–4 are
used, equation (A1) simplifies to

2(1 2 2v)D
g 5 2p(1 2 p)(2 2 3p 1 3p )

2#{(1 2 p 1 p )[m 1 (1 2 2q)n] 1 (1 2 2p)nD} .
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